当前位置: 切割设备 >> 切割设备前景 >> 众人看好的光芯片,国产有什么机会
来源:果壳硬科技
早在年,我国科学家钱学森就看好光子学,并围绕光子学提出了光子工业的概念,而到现在很多设想依然没有实现,许多价值还有待挖掘。[1]
如今,光芯片代表的光子学正与电子学引发一场科学革命,芯片从电到光,将是我国实现赶超的战略机遇[2]。光子革命已至,但若要光为人所用,其实也没有想象中那样容易。
光与电的完美配合现代大多数芯片的本质,就是将环境信号转换为可精细操控的电信号,或将处理过的电信号转换为环境信号的一个过程(如用电产生电热或用洛伦兹力产生磁场)。同理,光也可转化为电信号。实现光电信号相互转换的核心器件,就是光芯片。没有它,我们就无法与光交流。
光芯片早已深入每个人生活之中。你我都知道,家用电脑若要连接网络,都要安装光纤和“光猫”,让这套系统正常运作的功臣,就是光芯片。
为什么一定是光芯片?
这是因为光子作为信息载体具有先天的优势,可以实现几十Tb/s的信息传输速率,实现低交换延迟和高传输带宽,实现多路同时通信,同时拥有超低功耗的表现[2]。研究显示,光基设备中的数据以光速移动,相比普通电子电路,移动速度快10倍。[3]
虽然光芯片是天赋型选手,但要在系统中发挥作用,还是离不开电芯片。二者与PCB、结构件、套管进一步构成光器件,并以此为基础加工为光模块实现最终功能,最终应用于市场。
光芯片在产业链中的位置[4]
目前,光芯片的技术概念有多重含义,包括光通信、光计算、光量子等,应用广泛分布在工业、消费、汽车、医疗等领域。但它的典型应用场景仍然是光通信,也是最核心的应用领域。
光通信中的光芯片光通信指以光纤为载体传输光信号的大容量数据传输方式,通过光芯片和传输介质实现对光的控制。
在光通信产业链中,光芯片是最核心的部分,一般分为2.5Gb/s、10Gb/s、25Gb/s及以上各种调制速率,速率越快对应的光模块在单位时间内传输的信号量就越大。
与此同时,光芯片也是光模块物料成本结构中占比最大的部分。通常而言,光芯片约占中端光模块物料成本的40%,一些高端光模块中它的物料成本甚至能占到50%以上[5],反观电芯片的成本通常占比为10%~30%,越高速、高端的光模块电芯片成本占比越高。[6]
光芯片在光通信系统中应用位置[4]
按功能,光芯片主要分为激光器芯片和探测器芯片两类。激光器芯片用于发射信号,将电信号转化为光信号,按出光结构进一步分为面发射芯片和边发射芯片,主要包括VCSEL、FP、DFB、EML;探测器芯片用于接收信号,将光信号转化为电信号,主要包括PIN和APD。
对光芯片来说,市场最大的诉求是高速率和高带宽。自上世纪60年代开始,光芯片就在材料、结构设计、组件集成和生产工艺方面不断改进。目前EML激光器芯片大规模商用最高速率已达Gb/s,DFB和VCSEL激光器芯片大规模商用最高速率已达50Gb/s,与此同时,这些改变也让光芯片拥有向更广阔应用领域发展提供底气,诸如车载激光雷达、医疗等。[4]
不同光芯片的特性和应用场景[4]
光芯片的生产制造是难点。生产工序依序为MOCVD外延生长、光栅工艺、光波导制作、金属化工艺、端面镀膜、自动化芯片测试、芯片高频测试、可靠性测试验证等。其中,外延工艺是光芯片生产中最主要和最高技术门槛的环节,工艺水平直接决定了成本的性能指标和可靠性。一款优秀的光芯片背后,是高昂的投入、极长的研发周期、较大的研发风险以及极快的技术更新速度。
由于光芯片处在产业链上游,会牵扯出复杂的原材料问题。其本身一般由化合物半导体所制造,主要以砷化镓(GaAs)和磷化铟(InP)为代表的III-V族材料为衬底,通过内部能级跃迁过程伴随的光子的产生和吸收,进而实现光电信号相互转换。除此之外,制造过程中还会用到电子特气、光刻胶、湿电子化学品等原材料。
光芯片的主要分类[4]
光芯片作为上游元件,市场主要受下游光模块拉动。据国信证券测算,以光模块行业平均25%的毛利率及LightCounting对光模块全球超亿美元的市场规模预测估算,年光芯片全球市场规模约为35亿美元,预计年可达60亿美元。[7]
光通信产业链及市场规模[7]
随着数据量需求爆炸式增长,人们对光芯片的速率要求越来越高,而学术界和工业界则将目光放到了硅光芯片上。
把光子和电子糅在一起展望未来3年,硅光芯片(或光电融合)将是光通信的一大趋势,它将支撑大型数据中心的高速信息传输。目前,硅光芯片技术研究由美国、欧洲和日本引领,Gb/s、Gb/s、Gb/s硅光系列产品占据全球相干光模块市场约30%以上。[8]
顾名思义,硅光芯片就是在硅光子和硅电子芯片上取长补短,发挥二者优势。这一概念早在40年前就已诞生,但硅基发光一直是巨大难题,因此一般是以硅材料为基底,引入多种材料实现发光[9],分为SOI(绝缘体上硅)、SiN、III-V族(GaAs和InP)、硅衬底上铌酸锂薄膜四种制造平台。[10]
复杂的材料学问题引发更多技术难题,诸如硅光耦合工艺、晶圆自动测试及切割、硅光芯片的设计工具等技术挑战。另外,受制于产业链、工艺水平限制,硅光芯片还没有在产能、成本、良率上凸显优势。不过,硅光芯片的颠覆性引发了研究热潮,技术日趋成熟,即将进入规模化商用阶段。[11]
硅光芯片的作用远不至此,它具有高运算速度、低功耗、低时延等特点,在制造工艺上,与微电子器件类似,但又不必追求工艺尺寸的极限缩小,也许是帮助人们突破摩尔定律天花板的关键[12]。更重要的是,做好它就相当于打通光子工业的关节。科学家普遍认为,光子可以像电子一样作为信息载体来生成、处理、传输信息,其中光计算就是重要先进领域之一。光通信的光电转换技术可以应用在光计算中,而光计算所要求的低损耗、高密度光子集成也会进一步促进光通信发展。未来5年~10年,以硅光芯片为基础的光计算将逐步取代电子芯片的部分计算场景。[13]
据Yole预测,从年到年,硅光芯片的全球市场规模将从万美元升至11亿美元。其中,消费者健康、数据中心、光子计算、共封装引擎、长距离收发器将是主要细分市场。[14]
硅光领域近年并购动作频繁[15]
理想是丰满的,想要走那么远,还是要脚踏实地,先做好现有的光通信芯片。
光芯片的追逐者欧美日在光芯片上技术起步早、积累多,是市场的主导者。这些国家的研究机构和先进企业通过不断积累核心技术和生产工艺,逐步实现产业闭环,建立起了极高的行业壁垒。
反观国内则起步较晚,高速率光芯片(25Gb/s及以上速率)严重依赖进口,与国外产业领先水平存在明显差距。数据显示,我国2.5Gb/s光通信芯片国产化率接近50%,但10Gb/s及以上的光通信芯片国产化率却不超过5%,非常依赖Lumentum、Broad
转载请注明:http://www.aideyishus.com/lkcf/7528.html